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We study spin-Peierls structural lattice instabilities for a spin-1/2 isotropic XY chain with three-site interac-

tions of (XZX+YZY) type. Within the adopted adiabatic treatment we have to examine the ground-state energy
or the Helmholtz free energy of the spin chain with exchange couplings varying coherently with a possible
static lattice distortion pattern. Since the considered spin model can be converted into a system of noninter-
acting spinless fermions the required ground-state energy or the Helmholtz free energy can be calculated
accurately without making any approximations. We examine rigorously several lattice distortion patterns fo-

cusing on dimerized and trimerized ones, which owe their presence to the spin-Peierls mechanism. We present
phase diagrams illustrating the effect of the three-site interaction on the spin-Peierls lattice distortions. Finally
we discuss some properties of the deformable spin chain in the ground state and at finite temperatures. In
particular, we examine the transverse magnetization, the static transverse susceptibility and the specific heat
illustrating the changes in these quantities due to lattice instabilities.
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I. INTRODUCTION: THE MODEL

Quantum spin systems with multisite interactions have at-
tracted much interest during the past decade. Such systems
emerge naturally as effective spin models for the standard
Hubbard model at half filling in higher orders of the strong-
coupling ¢/U expansion! (see also Refs. 2 and 3). Another
example is provided by quantum spin systems with energy
currents.* The presence of multisite interactions may produce
competition between different interactions and therefore may
have a noticeable influence on the properties of the spin sys-
tems especially at low temperatures and in low dimensions.
Exactly solvable quantum spin models with multisite inter-
actions, in which effects of multisite interactions can be fol-
lowed reliably, are of particular interest. As an example we
may mention here one-dimensional modified XXZ models
with competing interactions which exhibit incommensurate
behavior and which can be examined accurately using the
Bethe ansatz approach.’ Another class of models is based on
the Jordan-Wigner fermionization approach.® After applying
the Jordan-Wigner transformation some quantum spin chains
with multisite interactions may be converted into systems of
noninteracting spinless fermions, and hence they admit a rig-
orous analysis.”!!

In the present study we consider a particular model with
multisite interactions belonging to the free-fermion class.”!”
Our goal is to examine spin-Peierls phenomena within an
adiabatic treatment. Note that our purpose is not to model
any specific material, but simply to study accurately a model
amenable to rigorous calculations. The present work may be
a vehicle for further studies of more complicated quantum
chains.

More specifically, we consider a spin-1/2 chain with iso-
tropic XY (i.e., XX) interaction between neighboring sites
and XZX+YZY interaction between three contiguous sites.
The Hamiltonian of the model on a lattice of N sites reads
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N
H= E [J(stfwl + Sﬁsfwl) + K(Sﬁsiz+ls2+2 + Sﬁszﬂsfﬁz)]’
n=1

(1)

where J and K are the two-site and the three-site couplings
between the sites n and n+1 and between the sites n, n+1,
and n+2, respectively. The particular boundary conditions
imposed are not essential for the thermodynamic quantities
which are studied below in the limit N — . We also note that
the thermodynamic quantities are insensitive to the sign of
the couplings J and K since the sign of J or K may be
changed by an appropriate unitary transformation. The merit
of the spin model considered is its exact solvability: After
applying the Jordan-Wigner transformation'? it reduces to a
one-dimensional model of spinless fermions with nearest-
neighbor and next-nearest-neighbor hoppings. From Ref. 10
we know that spin model (1) exhibits two different spin-
liquid phases separated by a quantum phase transition at the
critical value of the three-site interaction strength K
==*2lJ|.

To discuss spin-Peierls phenomena within an adiabatic
treatment we have to assume a (trial) static lattice distortion
which can be characterized by a set {5,}, where §,=€,,,
—¢€, is the (dimensionless) change in the distance between
the sites n and n+1, €, is the (dimensionless) displacement
of the site n, and 22‘1:15,,:0 (fixed-length case). Since ex-
change couplings in spin models are related to matrix ele-
ments between electronic states, such a change obviously
leads to exchange couplings J—J, and K— K, in Eq. (1).
We assume a linear dependence of the couplings on the in-
tersite distance changes {3, }:

J11=J(1_5n)’ Kn=K(1_N5n_x5n+l)- (2)

Moreover, we assume that K, depends explicitly on &, and
8,.1 only, and the parameter N is introduced to distinguish
between the effects of intersite distance change on the two-
site and the three-site interactions. In what follows we set
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N=1 for simplicity. For the case of pure dimerization, J,
+6,,1=0 and K, will depend neither on n nor on |§,|. This
does not imply, however, that the three-site coupling K be-
comes irrelevant.

Using the Jordan-Wigner fermionization approach one
can calculate accurately'? the ground-state energy of the spin
system Ey({5,}) (zero-temperature case) or the Helmholtz
free energy of the spin system F({8,}) (finite-temperature
case). The total ground-state energy NE({S,}) [Helmholtz
free energy NF({58,})] consists of the magnetic part
Ey({8,H[F({8,})] and the elastic part a="_ &%, where a is an
elastic constant. The further analysis proceeds along standard
lines: finding the lowest-energy lattice pattern comparing
(usually a restricted number of) trial lattice patterns.

The aim of the present study is to examine the role of the
three-site interactions, which come into play when K # 0. We
recall that for K=0 the dimerized pattern [i.e., §,=(-1)"8] is
known'31# to yield a lower energy than that of the uniform
chain (i.e., §,=0). More complicated lattice patterns may
become favorable in comparison with the uniform one in the
presence of an external (transverse) magnetic field.'>™'8 The
effect of the three-site interactions on the spin-Peierls insta-
bility has not been studied until now, while there exist simi-
lar studies on the effect of two-site next-nearest-neighbor
exchange interactions on spin-Peierls chains.'??> With our
paper, we attempt to fill this gap. Some preliminary results of
the present study were announced in Ref. 23.

The rest of the paper is organized as follows. In Sec. II we
report some exact calculations for periodically distorted spin-
1/2 XX chains with three-site interactions focusing on the
period-2 and period-3 cases. We use these results to construct
phase diagrams in Sec. III. Knowing the phase diagrams we
can calculate various quantities characterizing the deform-
able spin chain at zero and finite temperatures (Sec. IV). In
particular, we examine the dependence of the transverse
magnetization on the strength of the three-site interaction K
at different temperatures and the temperature dependences of
the energy gap, the static transverse susceptibility, and the
specific heat at various values of K. Finally, we summarize
our findings in Sec. V.

II. PERIODIC SPIN CHAINS

In this section we compute rigorously the ground-state
energy and the Helmholtz free energy of some periodic spin
chains which correspond to trial lattice dimerization/
trimerization patterns. For this purpose we consider an inho-
mogeneous version of Hamiltonian (1) (i.e., J—J,, K—K,)
and assume a periodic sequence of the couplings of period
Py J1KLhKy . T K KK J K. .. After performing
the Jordan-Wigner transformat10n12 We arrive at a (periodic)
system of spinless fermions on a chain with nearest-neighbor
and next-nearest-neighbor hoppings

B K N

H= E (C Cnst + Cop1Cp) = Z"(cicmz +CpinCa) |- (3)
For the calculation of thermodynamic quantities in the limit
N— we may assume periodic boundary conditions in Eq.
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(3). The Hamiltonian of spinless fermions (3) after some
straightforward manipulations can be further brought to a
diagonal form

P
H= 2 E Ai,anKni,K (4)
i=l &
with «k=2mn/N, n=-N/2,-N/2+1, ...
sume N'=N/p to be even.

For a chain with period p=2 we have an explicit expres-
sion for the spinless fermion energies,

JNI2—1. We as-

K, +K,
A =- COSK
' 4
2
1 K, -K, s o
x5 5 cos k| +J1+J5+2J,J,cos Kk

(5)

(see also Ref. 24).
For a period-3 chain the energles A,; . are the three solu-
tions of the cubic equation A FAN; +B=0 with

JK, + J,K; + 5K, B+h+): K+ K+K
A= COos K — - ,
4 4 16
KKK
B=—"""cos(2
> (2x)
4J\J2J5+ J K\ K5 + LK K, + KK
- CoSs K
16
J 3K+ I I3 K + J LK
EACELS 2;2 RIS 6)

The magnetic ground-state energy is Eo=2! ,2'A,;,,
where the prime means that the sum contains A; <0 only.
In the thermodynamic limit we get the following formula for
the ground-state energy per site:

|
€p=-— 2_

dK|A1 0= A, )
i=1 2
where 6(x) is the Heaviside step function.

The magnetic Helmholtz free energy is F=
-(1/B)ZF 2, In[ 1 +exp(-BA,; )], where B=1/T is the in-
verse temperature. The magnetic Helmholtz free energy per
site in the thermodynamic limit is given by

f=— f drIn[1+exp(-BA; J].  (8)
1 1 2p7T

In the zero-temperature limit 83— o Eq. (8) transforms into
Eq. (7) as it should.

Using the representation in terms of spinless fermions (4)
we can calculate rigorously various quantities for the spin
chain under consideration [see Egs. (15), (16), and (18) be-
low].
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FIG. 1. (Color online) Total ground-state energy per site £(J))
for dimerized system as K increases. J=1, «a=0.5, K
=0,0.04,0.08,0.12,0.16 (from top to bottom).

II1. PHASE DIAGRAMS
A. Case T=0

We start with the zero-temperature case. In our further
analysis we fix the energy units putting |J|=1, assume with-
out loss of generality />0 and K=0, and take N=100 000
for p=2 and N=100002 for p=3. Next, we calculate
ground-state energy (7) for dimerized system [i.e., with a
distortion pattern 8; 6,8, 5. .., 8;+ 8=0, see Egs. (5) and (2)]
and for trimerized system [i.e., with a distortion pattern
8,6,0;0,6,65. .., 8+ 6+ 8;=0, see Egs. (6) and (2)] varying
K from 0 to 3 for fixed « (say a=0.5) to get a general insight
into the behavior of the total ground-state energy per site
Eda.h).

Some typical dependences of the total ground-state energy
of the dimerized system on &, as K deviates from zero and
increases are shown in Fig. 1. Figure 2 shows the total
ground-state energy per site £(8;, d) for the trimerized case.
The period-3 lattice distortions are parameterized by 6; and
6, (8;+6,+6;=0). The panels of Fig. 2 correspond to the
values K, K=1.3,1.9,2.4,3, (top to bottom) of the three-site
interaction. In the dimerized case the energy £(8;) may ex-
hibit one or more minima. That is also true for (8, 6,) in
the trimerized case, p=3. In that case, however it is sufficient
to consider the line &;=4,. The reason for this is the invari-
ance of the physics with respect to a renumbering of the sites
in a period-3 chain. Due to that symmetry extremum points
of £(8,,68,) can only lie along the three straight lines &,
=0, 6;=—206,, 6;=—0,/2, and these lines are equivalent to
each other.”? For simplicity we denote £(8,,8=4;) for the
trimerized system by £(&;), as in the dimerized case. Typical
dependences £(8,) for the trimerized system for K around
K. are shown in Fig. 3. Below we discuss the dependence
£(6,) for the cases p=2 and p=3 in more detail.

1. Dimerization

For the dimerized case, §;=—5,, the changes in the behav-
ior of £(8)) as K increases are quite simple. First, we note
that due to symmetry £(8,)=&(-48,), and we consider further
only 8,=0. We observe that £(5,) shows one minimum at
0, # 0 if K does not exceed a certain value K,; two minima at
6;=0 and &, #0 occur for K,=K=K_; at a value K=K,
within that interval the depths of the two minima become
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(a) 3

)

(d)

FIG. 2. (Color online) Total ground-state energy per site
&(8,,6,) versus 8, and &, for trimerized system (distortion pattern
51 52535| 5253 “ey 51 + 52+ 5320) for /=1, a=0.5, (a) K=1.3, (b) K
=1.9, (c) K=2.4, (d) K=3. All minima are located along the lines
61=0,, 6,=-26,, 6;=—5,/2.
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FIG. 3. (Color online) Total ground-state energy per site &(8;) for trimerized system as K increases. J=1, «=0.5, (a) K
=1.6,1.65,1.7,1.9,2.1 (from top to bottom), (b) K=2.15,2.3,2.5,2.8,3 (from top to bottom). Notice that for clarity the curves correspond-
ing to K=1.65,1.7,1.9,2.1 and K=2.3,2.5,2.8,3 have been shifted upwards by 0.003, 0.006, 0.019, and 0.034 and 0.0155, 0.0385, 0.076,

and 0.102, respectively.

equal. For K exceeding K, £(8;) has only one minimum at
6,=0. This behavior, shown in Fig. 1, is typical for a
(ground-state) phase transition of first order, where the
phase-transition point is at K=K, and where [K,,K_] is the
interval in which metastable states occur. The value of &
which yields the lowest energy (denoted further 8}) plays the
role of an order parameter. For @=0.5 the order parameter
8/(K) is shown in Fig. 4(a) (open-circle line). Also shown

there are the stationary points &, where d£(5,)/ 98, =0. There
are always either two (as for K=K,), or three (K,<K
<K,), or one (K.<K) stationary point present. In the case of
three stationary points, the two outer ones are minima (the
stable and metastable states of the system, thick solid lines),
with a maximum (thin dash-dot line) between them. From
the data shown in Fig. 4(a) we find K,~0.0645 and K.
~(0.125 for the limits of the metastable region and K,
~(0.0905 for the phase-transition point, where the order pa-
rameter jumps from & =0.064 to zero. These K values are
marked by bold dots in Fig. 4.

The order parameter &;(K<K,)>0 in Fig. 4(a) is obvi-
ously constant. That fact may be explained as follows. The
numerical data from Fig. 1 show that the K-dependent con-
tribution to the ground-state energy vanishes for &, larger
than some K-dependent threshold value. That explains why
the minimum of &(4,) stays fixed as long as K is small
enough. This behavior of £(8)) can be understood by taking
another look at dispersion (5) for the situation at hand, J,
=1-6,, J,=1+6,, K;=K,=K. We then have

K 1
ix=—C0s K* \’_5\/1 +cos K+ 8%(1 —cos k), (9)

A

and at the Brillouin-zone boundaries, k= * 7, we have
A < ,=(K/2)-|8)| and A, . ,=(K/2)+|8)|. That means that
for K<2|68,| the lower band is completely “submerged”
(A,<0) while for the upper band A, ,>0. [We note that
the gapped excitations for K <|J,—J,| were reported in Ref.
24, compare the discussion around Eq. (12) of that paper.]
The ground-state energy then is given by the sum of all A,
and hence the K-dependent contribution vanishes, being a
sum over cos k, see Eq. (9). For smaller values of &8, (or
larger values of K) the lower band crosses the zero level and

the ground-state energy becomes K dependent.

Repeating the calculations reported in Fig. 4(a) for vari-
ous a we construct the ground-state phase diagram in the
plane K- a, Fig. 4(b), demonstrating how increasing K first
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FIG. 4. (Color online) Order parameter and ground-state phase
diagram for dimerized chain, J=1. (a) Order parameter &;(K) (open

-
.,

T
[ ]
.

circles) and stationary points 51 (K) of the total ground-state energy
per site £(8;) [thick solid lines (minima) and thin dash-dot lines
(maxima)], @=0.5. Note that the horizontal open-circle lines for the
order parameter coincide with the thick solid lines indicating the
deeper minimum of £(8)). (b) Ground-state phase diagram in the
plane K—a. The left light (cyan) curve corresponds to K,(a), the
middle dark (blue) curve corresponds to Kj(«), the right light
(cyan) curve corresponds to K.(a), where K, and K, are the limits
of the metastable region and K, is the phase-transition point. In both
panels we also denote the values of K,, K;, and K, (from left to
right) for @=0.5 by bold dots.
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makes the dimerized state metastable and then completely
suppresses it in favor of the uniform state.

2. Trimerization

We move to the trimerization patterns which emerge near
K=K_;. The changes in £(&,) as K increases are more com-
plicated than in the dimerized case (see Fig. 3). First, in
addition to the minimum at §;=0, when K surpasses K, a
minimum at &, <0 (the corresponding bond pattern is
“strong bond-strong bond-weak bond”) appears, which,
when K exceeds K,>K,, becomes the lowest-energy one.
With further increase in K, when K surpasses Ky, another
minimum at 8, >0 (the corresponding bond pattern is “weak
bond-weak bond—strong bond”) appears, which, when K ex-
ceeds K,> K, becomes the lowest-energy one. Then, as K
exceeds K}, the dependence £(8,) exhibits three minima, two
of which occur for §; <0 and the deepest one at 5, >0 [see
the solid (red) curve corresponding to K=2.15 in Fig. 3(b)].
With further increase in K, as K exceeds K;, the dependence
£(6,) shows only two minima: for §; <0 and the deeper one
for 6,>0. As K becomes larger than K;> K; the two minima
are located at §,=0 and (the deeper one) at §,>0. At K
=K, the depth of these minima is the same. Finally, for
K> K, the minimum at &,>0 disappears and the uniform
pattern with 8;=0 becomes favorable. The behavior of the
order parameter &;(K) described above, together with a set of

stationary points 5,(K) for @=0.5, is shown in Fig. 5(a). The
specific values of the three-site coupling for that example are
as follows: K;~1.633, K,~1.693, K;~1.745, K,~2.080,
K,=2.130, K;=2.175, K;~2.418, K;~2.610, K;~2.999.

Repeated calculations of &j(K) and 51(1() for various a
yield a phase diagram [see Fig. 5(b)]. We show by dark
(blue) curves K,(a), K (@), and K;(a) which correspond to
ground-state phase transitions of first order. Light (cyan)
curves K, (a), K{a), K;(a), K(a), K(a), and K,(a) indicate
the regions of metastability.

3. Analytical arguments for trimerization

As can be seen from Fig. 5(b) the phase diagram becomes
extremely simple in the limit K=K_;, a— %, indicating a
possible simplification of the analysis for that case. More
detailed consideration confirms this expectation. In fact, for
the trimerized system with K=2J and small (but nonzero) &,
(i.e., for a stiff lattice having large elastic constant «) the
magnetic ground-state energy per site [Eq. (7)] reads

1 o
60(51) = EJ dKAl,K’ (10)

where the energy of the lowest-energy band A, <0 can be
written in the form A, ,/J=M(k)M,(k). Here M,(«) for
0;—0 is an almost constant function for —7= k<, with
values close to 1 and

M(k) == 2V + (1 +R) S + (= 1 +288)cos «

=—\2\2+(1- N2t/ 1 -2 coszg,
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FIG. 5. (Color online) Order parameter and ground-state phase
diagram for trimerized chain, J=1. (a) Order parameter 8;(K) (open
circles) and stationary points &,(K) of the total ground-state energy
per site £(8;) [thick solid lines (minima) and thin dash-dot lines
(maxima)], @=0.5. (b) Ground-state phase diagram in the plane K
—a. From left to right the curves correspond to K, () [light (cyan)],
K, () [dark (blue)], K/(a) [light (cyan)], K,(e) [dark (blue)], K ()
[light (cyan)], K,(e) [light (cyan)], K;(«) [light (cyan)], K(«) [dark
(blue)], K,(«) [light (cyan)]. The dark (blue) curves are first-order
ground-state phase transitions, the light (cyan) curves denote limits
of metastability, i.e., points where minima in the total ground-state
energy appear or disappear (compare Fig. 3). In both panels we also
denote the values of K, ...,K; (from left to right) for a=0.5 by

bold dots.
,_ 2(1-285)
ST (-NE
ne _ 2_ (1+X)? ~(1+N)2
(Z')=1-z SEFNTIRST Ll 5. (11)

M (k) and M,(k) result from the trigonometric solution of
the cubic equation for A;,, discussed in Sec. II. Neglecting
the factor M,(«) <1 and using Eq. (11) ground-state energy
(10) becomes

Y
eo(8y) = - %V/z +(1=-N)28E(2)J, (12)

where E(z)=/[ g’quo\s’l—zz sin? ¢ is the complete elliptical
integral of the second kind. For z?~1, hence (z')*=1-7°
<1 we have®

094410-5



DERZHKO et al.

-0.3184 =
-0.3188
-0.3192 L L L L
0 0.03 0.06 009 0.12
(a) 9,

PHYSICAL REVIEW B 79, 094410 (2009)

-0.3184

-0.3188

-0.3192 L L L L
0 003 006 009 0.12

(b) 8

FIG. 6. (Color online) Total Helmholtz free energy per site F(8;) for dimerized system with J=1, @=0.5, (a) K=0.04, and (b) K
=0.08 as temperature increases, 7=0.001, 0.006, 0.011, 0.016, 0.021, 0.026, 0.031, 0.036 (from top to bottom).

U D ee 2 (o 3 e 15 (46
E(Z)=1+E<A_E>(Z)2+16<A_12>(Z)4+128<A_5>

4
X(2)0+ -, A=In—. (13)
z
Using the first two terms on the right-hand side of Eq. (13) to
write the total ground-state energy per site of the trimerized
system £(8))=e((8))+2ad; and minimizing £(8;) with re-
spect to &; we get

|5‘f|=exp<a—b%) >0, (14)
where a and b>0 are some coefficients, the precise values
of which are not important here. Equation (14) explicitly
demonstrates the instability. The simple reason for the trim-
erization at K=K_; is the 5% In 6, term in the small-6; ex-
pansion of the magnetic ground-state energy e,(4;), similar
to the dimerized case.'?

Two more remarks are in order here. First, we notice that

although omitting M,(x) <1 has no influence on the exis-
tence of a nonzero value of the trimerization parameter &),
the actual value of that parameter is sensitive to the approxi-
mation made since we slightly overestimate the value of the
magnetic part of the total ground-state energy. Second, from
Fig. 5(b) we also notice that for K=2 the spin system exhib-
its two energy minima, and the one which corresponds to
0;<0 is deeper. Obviously, the approximate total ground-
state energy based on Eq. (12) depends only on 5% and thus
cannot reproduce this fine feature.

B. Case T>0

We turn to the finite-temperature case. Now we must cal-
culate magnetic Helmholtz free energy (8) for dimerized and
trimerized systems and examine the total Helmholtz free en-
ergy per site F(J;). Some typical profiles for F(8;) are
shown in Fig. 6 (dimerized systems) and in Fig. 7 (trimerized
systems). We find that as temperature starts to increase the
ground-state picture for lattice distortion patterns may
change significantly. Thus, the first-order phase transition

-0.418

042
-0.422
-0.424
-0.426
-0.428

-0.43

(d)

FIG. 7. (Color online) Total Helmholtz free energy per site F(8,) for trimerized system with J=1, «=0.5, (a) K=1.8, (b) K=2.08, (c)
K=2.1, (d) K=2.2 as temperature increases, 7=0.002, 0.012, 0.022, 0.032, 0.042, 0.052, 0.062, 0.072, 0.082, 0.092, 0.102, 0.112 (from top

to bottom).
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FIG. 8. (Color online) Dimerization order parameter &) versus K
as temperature increases, J=1, a=0.5. B=2, 100, 50, 40, 35, 30,
29, 28, 27.5 [from top (or from right) to bottom (or to left)]. For
B=27.5 we have already &;=0 for all K (horizontal line &;=0).

from dimerized to uniform phase tuned by increasing K may
become of second-order as temperature increases, and for
sufficiently high temperatures may completely disappear (see
Fig. 8). Temperature effects are even more drastic for lattice
trimerization (see Fig. 9). The first-order phase transitions
between uniform and trimerized phases at K, and K; may
become of second order. The phase transition between two
different trimerized patterns at K, remains of first order as
temperature increases (see Fig. 9), however, for higher tem-
peratures the trimerized phase with 8} <0 does not appear
and the system shows the trimerized lattice pattern “weak
bond-weak bond-strong bond” only as K enters a corre-
sponding region (see the curve for $=8.75 in Fig. 9). Finally,
for sufficiently high temperatures (as for 8=8.5 in Fig. 9)
trimerization does not occur at all.

Another way to discuss finite-temperature effects is to fol-
low the temperature dependence of the order parameter &}
for different K (Figs. 10 and 11). For small K the temperature
dependence of the dimerization parameter corresponds to the
scenario of a second-order phase transition driven by tem-
perature that agrees with the known results in the limit K
=0."3 For larger values of K the dimerization order parameter
abruptly becomes zero above a certain temperature. More-
over, for K approaching K, the dimerization order parameter
immediately vanishes as temperature deviates from zero. The
details of that behavior are displayed in Fig. 10. We note here
that the two-site next-nearest-neighbor exchange interaction
effect on the spin-Peierls critical temperature was discussed
earlier in Ref. 19. Within the approximate approach elabo-
rated in that paper the authors found that the spin-Peierls
temperature may either increase or decrease depending on
the sign of the next-nearest-neighbor coupling J,. Namely,
the spin-Peierls temperature increases (decreases) if J, is an-
tiferromagnetic (ferromagnetic). In contrast, the spin-Peierls
temperature does not depend on the sign of the three-site
coupling K, although the three-site interactions noticeably
affect the appearance of the spin-Peierls phase at low tem-
perature.

The temperature dependence of the trimerization order
parameter for different K is even more intriguing. Thus, as K
exceeds K, the trimerized phase characterized by &;<0
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K

FIG. 9. (Color online) Trimerization order parameter &; versus
K as temperature increases, J=1, a=0.5. f=, 50, 20, 12, 10, 9.5,
9, 8.75, 8.5 (as B increases the dependence &} versus K approaches
the line 87=0). For 8=8.5 we have already &;=0 for all K.

emerges in the ground state. With increasing temperature the
order parameter 8; <0 vanishes either discontinuously or
continuously [see Fig. 11(a) and also Fig. 7(a)]. However,
when K is around K, with increasing temperature two
minima of the total Helmholtz free energy at negative and
positive 8, compete with each other [see Fig. 7(b)] producing
the behavior of the order parameter shown by the solid (red)
line in Fig. 11(b) (K=2.08). For larger values of K the
ground-state trimerized pattern is characterized by &;>0;
with increasing temperature the order parameter &) >0 van-
ishes either continuously or discontinuously [see Fig. 11(c)
and also Fig. 7(d)]. Even more complicated behavior, as for
K=2.58 [long-dashed (green) curve in Fig. 11(c)], may also
emerge.

To summarize this section, the ground-state lattice insta-
bilities owing to the spin-Peierls mechanism survive at low
temperatures, but their behavior changes as temperature in-
creases. Different ground-state phases may disappear at dif-
ferent temperatures, but ultimately all instabilities are de-
stroyed by thermal fluctuations as temperature becomes
sufficiently high. It is worth noticing that the characteristic
temperatures for dimerization and trimerization might be dif-
ferent (as in Figs. 10 and 11; note that these data correspond

87 7 K=0.01
0.06 s

0.05
0.04
0.03
0.02
0.01

FIG. 10. (Color online) Dimerization order parameter 51* versus
temperature as K increases, /=1, «=0.5. K=0.01, 0.03, 0.05, 0.07,
0.075, 0.08, 0.085, 0.09 [from top (or from right) to bottom (or to
left)].
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FIG. 11. (Color online) Trimerization order parameter &; versus
temperature as K increases, J=1, a=0.5. (a) K=1.7 [solid (red)],
K=1.8 [long-dashed (green)], K=2 [short-dashed (blue)]; (b) K
=2.08 [solid (red)], K=2.1 [long-dashed (green)]; (c) K=2.2 [solid
(red)], K=2.58 [long-dashed (green)], K=2.6 [short-dashed (blue)].

to N=1; at the same time one should bear in mind that the
typical interaction energy scales for dimerization, J=1, K
~(), and trimerization, J=1, K= 2, are different).

IV. GROUND-STATE AND FINITE-TEMPERATURE
PROPERTIES

The ground-state and finite-temperature properties of spin
chain (1) have been discussed in some detail in previous
studies. In particular, the role of the three-site interactions
controlled by K has been illustrated for both static'® and
dynamic?® properties of the spin model. (We also note that
some static properties of a structurally dimerized spin chain
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FIG. 12. (Color online) Energy gap A(T) [light (green) symbols]
and dimerization order parameter J;(7) [dark (black) symbols] ver-
sus temperature T (J=1,a=0.5). (a) K=0.075; (b) K=0.08.

with interactions J, J,, and K have been discussed in Ref.
24; those findings are relevant for the deformable spin chain
in question here, if for the given set of parameters the dimer-
ized phase is energetically most favorable.) Now we allow
for lattice deformations within spin chain (1) and discuss the
static properties of such a system at 7=0 and 7>0. The
phase diagrams obtained in Sec. III show which specific lat-
tice deformation pattern is adopted by the system for a con-
crete set of parameters (i.e., values of K and T, since we
fixed J=1, N=1, and @=0.5). It must be kept in mind that
only a limited set of possible lattice configurations has been
taken into consideration. Nevertheless it can be said with
certainty that for K=K, or K,= K=K, the uniform lattice is
unstable with respect to dimerization or trimerization, re-
spectively, and hence the properties of the system will defi-
nitely differ from those of the uniform lattice.

We begin with the energy gap. To find the energy gap
A(T) we evaluate the elementary excitation energies A; , [see
Egs. (4)-(6)] in terms of the order parameter &}(7) [we use
the results of Sec. III for 81* (T) as inputs for these calcula-
tions]. We denote the evaluated elementary excitation ener-
gies by A; (7). The magnetic ground-state energy at a tem-
perature T is given by Ey(T)=2 2/ A; (T) [we recall that
the prime means that the sum contains A; (7) <0 only]. The
energy gap A(T) is given by the energy of the first-excited
state, i.e., the smallest value of A; ,(7)=0. For the conven-
tional XX chain (i.e., K=0) we have A(T=0)=|58}(T=0)|J
[see Eq. (9) (with K=0) and discussion just below it], and
hence the energy gap is simply proportional to the dimeriza-
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FIG. 13. (Color online) Energy gap A(T) [light (green) symbols] and trimerization order parameter 8}(7) [dark (black) symbols] versus
temperature T (J=1,a=0.5). (a) K=1.705; (b) K=1.708; (c) K=1.71; (d) K=1.8; (e) K=2.07; (f) K=2.075; (g) K=2.1; (h) K=2.58.

tion parameter. However for K> 0 the relation between these
two quantities may be more intricate. In Figs. 12 and 13 we
report the results for the temperature-dependent energy gap
A(T) [light (green) symbols] for small values K (when
dimerization occurs) and for values of K around K, (when
trimerization occurs), respectively. We also show the corre-
sponding dependences of &}(T) for comparison. From these
figures it is nicely seen that as temperature decreases the
energy gap may open either continuously [as e.g., in Figs.
13(b)-13(d), etc.] or discontinuously [as e.g., in Fig. 12(a)].
The deformable spin chain may be dimerized but gapless

[e.g., slightly above T=0.02 in Fig. 12(a)] or dimerized and
gapped [e.g., at low temperatures in Fig. 12(a)]. Interestingly,
the deformable spin system may exhibit different trimerized
patterns while remaining gapless [see Figs. 13(g) and 13(h)]
or may show a trimerized pattern while simultaneously be-
coming gapless [see the temperatures around 7=0.02 in Fig.
13(f)]. From the results reported in Figs. 12 and 13 it should
be clear that the relation between the energy gap and the
parameter characterizing a lattice distortion may be rather
involved especially in the region where trimerized patterns
come into being.
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FIG. 14. (Color online) Transverse magnetization —m* versus K
for the deformable spin chain (J=1,a=0.5) for various tempera-
tures. (a) B=,50,27.5,12; (b) B==,100,50,40,27.5; (c) B
=0,50,20,12, 10. The results of panel (a) can be seen on a magni-
fied scale in panels (b) and (c). The zero-temperature result for spin
chain (1) obtained in Ref. 10 is shown by open circles.

We turn now to the transverse magnetization per site
m*=3N (s5)/N,  where  {((...))=Tr[exp(-BH)(...)]/Tr
exp(— ,BH) In order to calculate m® we introduce in Eq. (1)
the additional term —h="_ s, where h is an infinitesimally
small external magnetic field, evaluate m*=—4df/ dh, and then
set h=0. As a result we get

___2_

112[7’77

d K tanh

i BAiK
5 (15)

As it was noted in Refs. 9 and 10 spin model (1) exhibits a
nonzero transverse magnetization m*# 0 owing to the three-
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site interactions of (XZX+YZY) type although there is no
transverse field present in the model. The zero-temperature
dependence m* versus K for model (1) is shown by open
circles in Fig. 14. The transition point at K=K is clearly
indicated by the behavior of m*(K), the value of which shows
a cusp-type maximum at K=K, achieving the value 1/6
and monotonically decreases to zero as K goes to zero or to
infinity.

If lattice distortions are allowed, m*(K) shows changes
which are especially clearly visible at low temperatures (Fig.
14). First, for small K and low temperature the chain is
dimerized and the transverse magnetization is reduced [Fig.
14(b)]. (See Fig. 8 for the K range of dimerization at a given
temperature.) Deviations from the rigid-lattice results of Ref.
10 can also occur through trimerization, which is mainly
observed (see Fig. 9) in the vicinity of K=K_. The non-
monotonic changes in the transverse magnetization caused
by the transition to trimerization are displayed in Fig. 14(c).
As expected, the magnetization curves show sharper features
at lower temperatures.

Next we discuss the static transverse susceptibility per site
X°=0m?/ dh|—p, which can be calculated according to the for-
mula

(16)
45 ZPWJ' coshzﬁA

The zero-temperature value of the static transverse suscepti-
bility x*(T=0) can be easily obtained by using the limit rep-
resentation of the Dirac delta function  &(x)
=limy_ 1/[2T cosh?(x/T)]. Now we may rewrite Eq. (16)
for the limiting value at 7=0 in the form

YT = 0)——2 f dK5< ’“) (17)
1 1 2p77 -

For the uniform chain (p=1) with K=0 we have to substitute
A, —J cos k, and therefore [T _dxd(A;,/2)—4/|J| and, as
a result, we arrive at the familiar result x(7=0)=1/(m}J]|).
For the uniform chain with K#0 we have A;,—J cos
—(K/2)cos(2k), and hence x*(T=0)— for K=K_. More-
over, we can easily understand why x° is zero at 7=0 in the
dimerized phase of the conventional XX chain:'3 The simple
reason for that is that A; ,# O for all «. In the presence of the
three-site couplings the elementary excitation energies A; .
become complicated functions of x. However, x*(T=0) # 0
until there exist « for which A;,=0. Thus, a nonzero value
of x* at T=0 immediately signalizes that the energy gap (at
T=0) is zero and vice versa, a zero value of *(T=0) means
that A(T=0) # 0. This can be nicely seen in Fig. 15 where we
show the temperature dependence of x* for different values
of K [compare the T— 0 results for small K in Fig. 15(a) and
for K=1.8,2.08 in Fig. 15(b) (gapped case) with the T—0
results for K=2.1,2.2 in Fig. 15(b) (gapless case)]. The tem-
perature dependences of x* shown in Fig. 15 correlate with
the changes in lattice structure indicated by &} in Figs. 10
and 11.

Finally we discuss the specific heat per site c=
~T&f/dT* which can be calculated according to the formula
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FIG. 15. (Color online) Temperature dependence of the static
transverse susceptibility x° for the deformable spin chain (J=1,«a
=0.5) for various values of K. (a) K=0.01,0.07,0.08,0.09; (b) K
=1.8,2.08,2.1,2.2. We also show the results for rigid spin chain (1)
with J=1, K=0.08, and K=2.08 as they follow from Ref. 10 (open
circles).

L ™ Bi 2
c= — w{ﬁ) . (18)

=1 2pT) cosh—

We recall from Ref. 10 that the ground-state phase transition
inherent in model (1) produces anomalous low-temperature
behavior in the vicinity of K=K_;. Most clearly this
anomaly is seen in the low-temperature behavior of the spe-
cific heat c. Away from the critical point c*7 at low tem-
peratures [open circles in Fig. 16(a)], however, in the vicinity
of the critical point ¢ exhibits an anomalo% square-root de-
pendence on T at low temperatures, coy7. The crossover
from linear to square-root behavior can be seen in the data
for K=2.08>K_;,=2 (open circles) in Fig. 16(b).

If allowance is made for an elastic distortion of the lattice,
the temperature dependence of the specific heat in the low-
temperature region may be different from the rigid-lattice
predictions (in the high-temperature region the lattice is not
distorted and the temperature dependence of the specific heat
is the same as for the uniform lattice). For small K, when the
lattice is dimerized at low temperatures but is uniform for
higher temperatures, the specific heat exhibits a behavior as
in Fig. 16(a), whereas for K around K_;, when trimerized
patterns may emerge at low temperatures, the specific heat
exhibits a behavior as in Fig. 16(b).
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FIG. 16. (Color online) Temperature dependence of the specific
heat ¢ for the deformable spin chain (/=1,@=0.5) for various val-
ues of K. (a) K=0.01,0.07,0.08,0.09; (b) K=1.8,2.08,2.1,2.2. We
also show the results for the rigid spin chain (1) with J=1, K
=0.08, and K=2.08 as they follow from Ref. 10 (open circles).

To summarize this section, the calculated equilibrium
properties of the deformable spin chain clearly reflect the
changes due to spin-lattice coupling which may give rise to a
lattice distortion. We observe an anomalous temperature de-
pendence of such quantities as the static transverse suscepti-
bility or the specific heat. At low temperatures we also ob-
serve an anomalous dependence of such quantities as the
transverse magnetization on the three-spin coupling constant
K, which in turn may depend on external or internal pressure.
We believe that our theoretical investigation may be helpful
to understand the properties of real spin-Peierls materials for
which these equilibrium properties are accessible experimen-
tally.

V. SUMMARY

In this work we study the spin-1/2 XX chain with three-
site interactions of (XZX+YZY) type (1) assuming the under-
lying lattice to be deformable. The deformations of the lattice
cause changes in exchange couplings (2). The elastic energy
of these static deformations is also taken into account. By
constructing trial states we have unambiguously shown that a
dimerized or trimerized state has lower ground-state energy
and Helmbholtz free energy than the uniform state for certain
three-site interaction strengths K. Although we cannot ex-
clude that the ground-state energy (for 7=0) or Helmholtz
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free energy (for 7>0) can be lowered further by more com-
plicated lattice distortion patterns, our analysis has demon-
strated that the uniform chain is unstable in some cases. (We
note that rigorous statements about exact distortion patterns
of such lattices are rather scarce; for a proof that the dimer-
ized state is the exact ground state for K=0 see Ref. 27;
some rigorous results about incommensurate patterns are re-
ported in Ref. 28.) The additional three-site interactions con-
sidered in our study cause a number of phases to appear in
the ground-state phase diagram as compared to the simple
nearest-neighbor model. First of all they destroy dimeriza-
tion, but being sufficiently strong they promote trimerization.
As temperature deviates from zero the periodic ground-state
phases may first persist but finally disappear. After finding
the energetically favorable phases we have calculated some
quantities of deformable spin chain (1) considering as ex-
amples the dependence of the transverse magnetization m* on
K at different temperatures (Fig. 14) and the temperature
dependence of the static transverse susceptibility x* and the
specific heat ¢ at different K (Figs. 15 and 16). All quantities
calculated are visibly influenced by the lattice distortion in
the parameter region where the lattice is distorted. Finally, it

PHYSICAL REVIEW B 79, 094410 (2009)

should be mentioned that the results reported here may be
also of interest in the context of one-dimensional electronic
models with next-nearest-neighbor hopping.

In the present paper we focus on the static properties of
the model. We notice that an analysis of the dynamic prop-
erties of the model requires a separate study [we may men-
tion here a study on dynamic properties of the spin-Peierls
transition in simple nearest-neighbor model (1) with K=0,
i.e., spin-1/2 XX chain,? as well as some related studies.?*3!
Another interesting problem which deserves to be examined
is the study of the effect of an external (transverse) magnetic
field.
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